第1章 基本的尺規(guī)作圖
1.1 尺規(guī)作圖的預備知識
1.1.1 幾何作圖和尺規(guī)作圖
1.1.2 幾何成圖中的幾個重要元素
1.1.3 幾何作圖題的條件
1.1.4 解作圖題與其步驟
1.1.5 直尺與圓規(guī)兩種工具勝任的功能
習題1-1
幾何之父——歐幾里得
1.2 基本作圖與兩圓公切線的作圖法
1.2.1 基本作圖
1.2.2 兩圓公切線作圖
習題1-2
1.3 幾何作圖的分類與常用的作圖方法
1.3.1 幾何作圖的分類
1.3.2 常用的作圖方法
1.3.3 代數法作圖的兩個重要的問題
習題1-3
1.4 談“幾何作圖的三大難題”與“尺規(guī)作圖不能問題
1.4.1 “幾何作圖的三大難題”的作圖
1.4.2 “尺規(guī)作圖不能問題”的間接判斷方法
習題1-4
近代科學的始祖——笛卡兒
1.5 等分圓周問題與用尺規(guī)等分圓周的近似作圖法
1.5.1 等分圓周問題
1.5.2 用尺規(guī)等分圓周的近似作圖法
習題1-5
數學王子——高斯
業(yè)余數學家之王——費馬
第2章 空間幾何體在平面上的表示
2.1 投影與平行投影變換的基本性質
2.1.1 投影概念
2.1.2 平行投影的定義及性質
2.1.3 中心投影
習題2-1
2.2 空間圖形在平面上的表示方法
2.2.1 水平放置平面圖形的畫法
2.2.2 棱柱平面直觀圖的斜二測作圖
2.2.3 臺體平面直觀圖的斜二測作圖
習題2-2
2.3 圓弧連接、橢圓和圓柱、圓錐平面直觀圖的作圖
2.3.1 圓弧連接
2.3.2 橢圓作圖
習題2-2
第3章 徒手作圖
3.1 平面圖形、空間圖形的平面圖的徒手畫法
3.1.1 徒手畫直線、平行線、垂線、圓和橢圓
3.1.2 平面與平面的位置關系的徒手畫法
3.1.3 空間圖形添加“輔助平面”和幾何體“截面”的徒手畫法
習題3-1
3.2 徒手畫數量關系的實物分析圖或線段分析圖
習題3-2
3.3 常見幾何體的平面直觀圖的徒手畫法
3.3.1 正方體和長方體平面直觀圖的徒手畫法
3.3.2 棱柱平面直觀圖的徒手畫法
3.3.3 棱錐平面直觀圖的徒手畫法
3.3.4 棱臺平面直觀圖的徒手畫法
3.3.5 圓柱平面直觀圖的徒手畫法
3.3.6 斜圓柱平面直觀圖的徒手畫法
3.3.7 圓錐平面直觀圖的徒手畫法
3.3.8 圓臺平面直觀圖的徒手畫法
3.3.9 球的平面直觀圖的徒手畫法
3.3.1 0球缺和球臺平面直觀圖的徒手畫法
3.3.1 1擬柱體
習題3-3
第4章 空間幾何體的三視圖與直觀圖形
4.1 三視圖的概念
4.1.1 三視圖的三投影體系
4.1.2 三視圖的概念
4.1.3 三視圖的形成
習題4-1
畫法幾何之父——蒙日
4.2 幾何體與三視圖的關系
4.2.1 三視圖之間的投影規(guī)律
4.2.2 三視圖四注意
4.2.3 畫出實物(或實物平面直觀圖)的三視圖
4.2.4 由三視圖畫出實物的平面直觀圖
習題4-2
第5章 多面體和旋轉體及模型制作
5.1 多面體及模型制作
5.1.1 直棱柱、正棱錐和正棱臺模型制作
5.1.2 正多面體、歐拉定理及正多面體模型制作
習題5-1
應用數學巨匠——歐拉
5.2 旋轉體及模型制作
5.2.1 圓柱模型制作
5.2.2 圓錐模型制作
5.2.3 圓臺模型制作
5.2.4 蒙古包制作
習題5-2
習題解答、答案或提示
主要參考文獻